14,693 research outputs found

    A 3-3-1 model with right-handed neutrinos based on the Δ(27)\Delta\left(27\right) family symmetry

    Full text link
    We present the first multiscalar singlet extension of the 3-3-1 model with right-handed neutrinos, based on the Δ(27)\Delta \left( 27\right) family symmetry, supplemented by the Z4⊗Z8⊗Z14Z_{4}\otimes Z_{8}\otimes Z_{14} flavor group, consistent with current low energy fermion flavor data. In the model under consideration, the light active neutrino masses are generated from a double seesaw mechanism and the observed pattern of charged fermion masses and quark mixing angles is caused by the breaking of the Δ(27)⊗Z4⊗Z8⊗Z14\Delta \left( 27\right) \otimes Z_{4}\otimes Z_{8}\otimes Z_{14} discrete group at very high energy. Our model has only 14 effective free parameters, which are fitted to reproduce the experimental values of the 18 physical observables in the quark and lepton sectors. The obtained physical observables for the quark sector agree with their experimental values, whereas those ones for the lepton sector also do, only for the inverted neutrino mass hierarchy. The normal neutrino mass hierarchy scenario of the model is disfavored by the neutrino oscillation experimental data. We find an effective Majorana neutrino mass parameter of neutrinoless double beta decay of mββ=m_{\beta \beta }= 22 meV, a leptonic Dirac CP violating phase of 34∘34^{\circ } and a Jarlskog invariant of about 10−210^{-2} for the inverted neutrino mass spectrum.Comment: 22 pages. Final version published in European Physical Journal C. arXiv admin note: text overlap with arXiv:1601.03300, arXiv:1309.656

    Topological gravitation on graph manifolds

    Full text link
    A model of topological field theory is presented in which the vacuum coupling constants are topological invariants of the four-dimensional spacetime. Thus the coupling constants are theoretically computable, and they indicate the topological structure of our universe.Comment: 3 pages, a talk delivered at the 11th Marcel Grossmann Meeting (2006

    Guaranteed emergence of genuine entanglement in 3-qubit evolving systems

    Full text link
    Multipartite entanglement has been shown to be of particular relevance for a better understanding and exploitation of the dynamics and flow of entanglement in multiparty systems. This calls for analysis aimed at identifying the appropriate processes that guarantee the emergence of multipartite entanglement in a wide range of scenarios. Here we carry on such analysis considering a system of two initially entangled qubits, one of which is let to interact with a third qubit according to an arbitrary unitary evolution. We establish necessary and sufficient conditions on the corresponding Kraus operators, to discern whether the evolved state pertains to either one of the classes of 3-qubit pure states that exhibit some kind of entanglement, namely biseparable, W-, and GHZ- genuine entangled classes. Our results provide a classification of the Kraus operators according to their capacity of producing 3-qubit entanglement, and pave the way for extending the analysis to larger systems and determining the particular interactions that must be implemented in order to create, enhance and distribute entanglement in a specific manner.Comment: Two new subsections included. Accepted for publication in The European Physical Journal
    • …
    corecore